人人看超碰I又黄又爽一区二区三区I伦理亚洲I久久久香蕉视频I国产九九九九九I日本黄色录象I日韩av不卡电影I欧美va天堂Iav网站大全免费I国产一区二区aI97日日夜夜Ixx99小雪I最黄一级片I韩国伦理电影免费在线I综合色亚洲I91精品国产一二三I欧美zozoI99热在线观看I国产精品精东影业I久久久国产精品一区I日本伊人网Iwww色日本I在线观看免费观看在线I日韩欧美二区三区I人人caoI97青草

芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟大學

同濟大學

聯合大學.jpg

聯合大學

寶潔公司

美國保潔

強生=

美國強生

瑞士羅氏

瑞士羅氏

當前位置首頁 > 新聞中心

探索泡沫粗化與表面流變學之間的關聯性疏水性蛋白——結論、致謝!

來源:上海謂載 瀏覽 1796 次 發布時間:2021-11-25

結論


在這項工作中,我們研究了由HFBII疏水蛋白、天然低分子量奎拉葉皂甙乳化劑制成的泡沫的穩定性,并將其與由已知表面活性蛋白(如b-乳球蛋白和b-酪蛋白)制成的泡沫進行了比較。 所有泡沫的空氣體積分數約為50%,低于緊密包裝,泡沫氣泡懸浮在生物聚合物溶液中,具有微弱的屈服應力,足以在實驗期間抑制直徑小于200微米的氣泡的乳狀化。 這一實驗設計使我們能夠清楚地將氣泡聚結和乳脂化的影響與由于氣體擴散導致的氣泡歧化分開。 我們的結果表明,不同體系的歧化速率存在顯著差異,這反過來可能歸因于吸附層表面流變特性的差異。 為了研究它們,我們使用了大變形實驗,正如我們在這里推測的那樣,與文獻中通常報道的小變形平衡測量相比,大變形實驗更接近歧化過程中的真實條件。 然而,在這種情況下,表面流變參數應僅用于類似條件下系統之間的差異比較,并且應小心處理它們與各自平衡性質的關系。 所有泡沫的空氣體積分數約為50%,低于緊密包裝,泡沫氣泡懸浮在生物聚合物溶液中,具有微弱的屈服應力,足以在實驗期間抑制直徑小于200微米的氣泡的乳狀化。這一實驗設計使我們能夠清楚地將氣泡聚結和乳脂化的影響與由于氣體擴散導致的氣泡歧化分開。我們的結果表明,不同體系的歧化速率存在顯著差異,這反過來可能歸因于吸附層表面流變特性的差異。為了研究它們,我們使用了大變形實驗,正如我們在這里推測的那樣,與文獻中通常報道的小變形平衡測量相比,大變形實驗更接近歧化過程中的真實條件。然而,在這種情況下,表面流變參數應僅用于類似條件下系統之間的差異比較,并且應小心處理它們與各自平衡性質的關系。


然后,我們將這里研究的不同吸附層的表面性質與在非常稀釋狀態下具有類似表面膨脹行為的等效2D聚合物網絡相關聯。 這種與等效2D聚合物的比較使我們能夠根據其“內部”硬度來比較層的性質。 這種比較表明,HFBII分子在界面層表現為比其他分子更硬的實體。


這種硬粒子行為進一步反映在高壓縮下的行為中,HFBII在高壓縮下形成微觀褶皺,并導致橢偏儀信號突然增加和噪聲,這很可能與褶皺的形成有關。 這種行為不同于其他蛋白質,它們可能被分子壓縮,甚至從表面分離,而不會產生微觀褶皺。 因此,HFBII的最大模量大大超過了所研究的其他表面活性劑,并且觀察到有效的膨脹硬化而不是膨脹軟化。 此外,HFBII層在膨脹變形和剪切變形下的粘性耗散較小。


當將蛋白質層剛度轉化為氣泡收縮的驅動力時,通過2Emax/gmax>5和有限的粘性耗散量預測,HFBII可以有效阻止歧化,這與正在研究的所有其他材料不同。 這一預測得到了氣泡緊密堆積下方空氣分數下模型泡沫的氣泡尺寸演變的證實。 HFBII能夠在至少比參考材料大三個數量級的時間尺度上保持恒定的氣泡尺寸。


致謝


作者要感謝英國科爾沃思聯合利華研發部的安德魯·考克斯博士和荷蘭弗拉丁根聯合利華研發部的魯本·阿諾多夫博士,感謝他們進行了許多富有啟發性的討論和發表了許多評論。


工具書類


1 M. B. J. Meinders and T. van Vliet, Adv. Colloid Interface Sci., 2004, 108–109, 119–126.


2 W. Kloek, T. van Vliet and M. Meinders, J. Colloid Interface Sci., 2001, 237, 158–166.


3 J. J. Kokelaar and A. Prins, J. Cereal Sci., 1995, 22, 53–61.


4 H. D. Goff, Int. Dairy J., 1997, 7, 363–373.


5 J. W. Gibbs, Collected Works: Volume I Thermodynamics, Yale University Press, New Haven, 1957.


6 M. J. Ridout, A. R. Mackie and P. J. Wilde, J. Agric. Food Chem., 2004, 52, 3930–3937.


7 P. J. Wilde, Curr. Opin. Colloid Interface Sci., 2000, 5, 176–181.


8 E. Dickinson, Colloids Surf., B, 1999, 15, 161–176.


9 E. Dickinson, R. Ettelaie, B. S. Murray and Z. Du, J. Colloid Interface Sci., 2002, 252, 202–213.


10 A. H. Martin, K. Grolle, M. A. Bos, M. A. Cohen Stuart and T. van Vliet, J. Colloid Interface Sci., 2002, 254, 175–183.


11 A. Prins and H. K. van Kalsbeek, Curr. Opin. Colloid Interface Sci., 1998, 3, 639–642.


12 R. Xu, E. Dickinson and B. S. Murray, Langmuir, 2007, 23, 5005– 5013.


13 R. Ettelaie, E. Dickinson, Z. Du and B. S. Murray, J. Colloid Interface Sci., 2003, 263, 47–58.


14 A. Cooper, M. W. Kennedy, R. I. Fleming, E. H. Wilson, H. Videler, D. L. Wokosin, T. J. Su, R. J. Green and J. R. Lu, Biophys. J., 2005, 88, 2114–2125.


15 H. A. B. W€osten, Annu. Rev. Microbiol., 2001, 55, 625–646.


16 Z. I. Lalchev, R. K. Todorov, Y. T. Christova, P. J. Wilde, A. R. Mackie and D. C. Clark, Biophys. J., 1996, 71, 2591–2601.


17 J. Y. Park, M. A. Plahar, Y. C. Hung, K. H. McWatters and J. B. Eun, J. Sci. Food Agric., 2005, 85, 1845–1851.


18 A. L. Campbell, B. L. Holt, S. D. Stoyanov and V. N. Paunov, J. Mater. Chem., 2008, 18, 4074–4078.


19 W. Z. Zhou, J. Cao, W. C. Liu and S. D. Stoyanov, Angew. Chem., Int. Ed., 2009, 48, 378–381.


20 U. T. Gonzenbach, A. R. Studart, E. Tervoort and L. J. Gauckler, Langmuir, 2006, 22, 10983–10988.


21 H. A. B. W€osten and M. L. de Vocht, Biochim. Biophys. Acta, 2000, 1469, 79–86.


22 M. L. de Vocht, K. Scholtmeijer, E. W. van der Vegte, O. M. de Vries, N. Sonveaux, H. A. W€osten, J. M. Ruysschaert, G. Hadziioannou, J. G. Wessels and G. T. Robillard, Biophys. J., 1998, 74, 2059–2068.


23 J. Hakanpaa, J. Hakanpaa, A. Paananen, S. Askolin, T. NakariSetala, T. Parkkinen, M. Penttila, M. Linder and J. Rouvinen, J. Biol. Chem., 2004, 279, 534–539.


24 R. Zangi, M. L. de Vocht, G. T. Robillard and A. E. Mark, Biophys. J., 2002, 83, 112–124.


25 A. R. Cox, F. Cagnol, A. B. Russell and M. J. Izzard, Langmuir, 2007, 23, 7995–8002.


26 A. R. Cox, D. L. Aldred and A. B. Russell, Food Hydrocolloids, 2009, 23, 366–376.


27 S. Mitra and S. R. Dungan, J. Agric. Food Chem., 1997, 45, 1587– 1595.


28 M. J. Bailey, S. Askolin, N. Horhammer, M. Tenkanen, M. Linder, M. Penttila and T. Nakari-Setala, Appl. Microbiol. Biotechnol., 2002, 58, 721–727.


29 M. Linder, K. Selber, T. Nakari-Setala, M. Q. Qiao, M. R. Kula and M. Penttila, Biomacromolecules, 2001, 2, 511–517.


30 R. S. Farr and R. D. Groot, J. Chem. Phys., 2009, 131, 244104.


31 D. L. Aldred, A. R. Cox and S. D. Stoyanov, Patent No. WO2007039064A1, 2007.


32 M. Harke, R. Teppner, O. Schulz, H. Orendi and H. Motschmann, Rev. Sci. Instrum., 1997, 68, 3130–3134.


33 R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, Elsevier, Amsterdam, 1999.


34 J. De Feijter, J. Benjamins and F. A. Veer, Biopolymers, 1978, 17, 1759–1772.


35 T. D. Gurkov, S. C. Russev, K. D. Danov, I. B. Ivanov and B. Campbell, Langmuir, 2003, 19, 7362–7369.


36 P. Erni, P. Fischer and E. J. Windhab, Rev. Sci. Instrum., 2003, 74, 4916–4924.


37 A. Paananen, E. Vuorimaa, M. Torkkeli, M. Penttila, M. Kauranen, O. Ikkkala, H. Lemmetyinen, R. Serimaa and M. B. Linder, Biochemistry, 2003, 42, 5253–5258.


38 P. Walstra, Physical Chemistry of Foods, Marcel Dekker, New York, 2006.


39 K. D. Danov, P. A. Kralchevsky and S. D. Stoyanov, Langmuir, 2009, 26, 143–155.


40 P. Cicuta and E. M. Terentjev, Eur. Phys. J. E, 2005, 16, 147–158.


41 N. E. Hotrum, M. A. Cohen Stuart, T. van Vliet and G. A. van Aken, Langmuir, 2003, 19, 10210–10216.


42 A. H. Martin, M. A. Cohen Stuart, M. A. Bos and T. van Vliet, Langmuir, 2005, 21, 4083–4089.


43 A. Hambardzumyan, V. Aguie-Beghin, I. Panaitov and R. Douillard, Langmuir, 2003, 19, 72–78.


44 J. M. Rodriguez Patino, C. C. Sanchez and M. R. Rodriguez Nino, Food Hydrocolloids, 1999, 13, 401–408.


45 H. D. Bijsterbosch, V. O. de Haan, A. W. de Graaf, M. Mellema, F. A. M. Leermakers, M. A. Cohen Stuart and A. A. Well, Langmuir, 1995, 11, 4467–4473.


46 P. F. Fox, Developments in Dairy Chemistry—4, Elsevier Science Publishers Ltd., London, 1st edn, 1989.


47 F. MacRitchie, Adv. Colloid Interface Sci., 1986, 25, 341–385.


48 C. J. Beverung, C. J. Radke and H. W. Blanch, Biophys. Chem., 1999, 81, 59–80.


探索泡沫粗化與表面流變學之間的關聯性疏水性蛋白——摘要、介紹

探索泡沫粗化與表面流變學之間的關聯性疏水性蛋白——材料和方法

探索泡沫粗化與表面流變學之間的關聯性疏水性蛋白——結果和討論

探索泡沫粗化與表面流變學之間的關聯性疏水性蛋白——結論、致謝!


主站蜘蛛池模板: 男女爽爽爽 | 亚洲综合精品久久 | 欧美午夜精品理论片a级按摩 | 国产一区小视频 | 日韩在线影视 | 欧美一区二区在线视频 | 亚洲天堂色图片 | 亚洲精品乱码久久久久久蜜桃麻豆 | 爆乳熟妇一区二区三区霸乳 | 久久久久亚洲av毛片大全 | 糖心av| 久久无码av一区二区三区电影网 | 一本色道久久hezyo加勒比 | 黑帮大佬和我的三百六十五天 | 日本女优中文字幕 | 天天做天天爱天天综合色 | 思思99re | 亚洲国产天堂 | 久久久久国产精品区片区无码 | 艳妇乳肉亭妇荡乳av | 在线伊人 | 国产三级小视频在线观看 | 久久精品9 | 少妇激情四射 | 男女污视频在线观看 | 一级片av| 黄片毛片在线免费观看 | 精品深夜av无码一区二区老年 | 亚洲视频99| 中文无码三区久久免费 | 黄色91网站 | 俺去操| 都市激情校园春色亚洲 | 97精品久久 | 亚洲图片激情小说 | 日韩精彩视频 | 96视频在线免费观看 | 91超碰在| 久久午夜夜伦鲁鲁片无码免费 | 亚洲美女视频一区二区 | 日本午夜在线 |