合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 新型納米材料2-D納米黑卡在油水界面的微觀驅油機理、界面張力測定(三)
> 基于界面張力消失法計算CO2-原油最小混相壓力
> 不同質(zhì)量濃度瀝青質(zhì)溶液界面張力、界面剪切黏度及粒徑分布圖【上】
> 物質(zhì)的形態(tài)之液晶和液體(表面張力)
> 人胰島素的朗繆爾單分子層膜的表面化學和光譜學性質(zhì)——實驗部分
> C72-MPB氟醚磷酸膽堿表面活性劑表面張力、泡沫/潤濕性能測定(一)
> 煤體潤濕性與水溶液表面張力關系的實驗分析【下】
> 混合型烷醇酰胺復雜組成對油/水界面張力的影響規(guī)律(二)
> 激光釬涂金剛石的涂層形成與表面張力有何關系(二)
> 遼河油田原油的石油酸、石油堿組分萃取過程、結構表征及界面張力測量——實驗部分
推薦新聞Info
-
> 烷基二苯醚/烷基苯混合磺酸鹽靜態(tài)表面張力、金屬腐蝕性及凈洗力測定(二)
> 烷基二苯醚/烷基苯混合磺酸鹽靜態(tài)表面張力、金屬腐蝕性及凈洗力測定(一)
> 全自動張力測定儀揭示子細胞表面張力對胞質(zhì)分裂結局的主導作用(二)
> 全自動張力測定儀揭示子細胞表面張力對胞質(zhì)分裂結局的主導作用(一)
> 煙道氣與正己烷對稠油表面張力的影響機制研究(三)
> 煙道氣與正己烷對稠油表面張力的影響機制研究(二)
> 煙道氣與正己烷對稠油表面張力的影響機制研究(一)
> 變化磁場、零磁場條件下磁性液體表面張力系數(shù)測定
> 晶圓級超平整石墨烯載網(wǎng)的批量化制備步驟與應用
> 水性不銹鋼喇叭網(wǎng)抗劃涂料的技術突破與性能優(yōu)化
烷基-β-D-吡喃木糖苷溶解性、表面張力、乳化性能等理化性質(zhì)研究(三)
來源:中南大學學報(自然科學版) 瀏覽 985 次 發(fā)布時間:2025-03-03
2.3烷基-β-D-吡喃木糖苷的溶解焓
在同一溫度下,烷基-β-D-吡喃木糖苷隨著具有憎水作用的烷基鏈長度的增長,親水性逐漸變?nèi)酰憩F(xiàn)為在水中的溶解度逐漸變小。在不同溫度下,隨著溫度升高,同一烷基木糖苷溶解度增大。為了測定烷基木糖苷的溶解焓和溶解熵,分別選取室溫下在水中有一定溶解度的烷基-β-D-吡喃木糖苷6a~6f測出在15,25,35,45和55℃下的溶解度,根據(jù)式(1)所示的溫度和溶解度關系式(其中為熱力學溫度,為摩爾氣體常數(shù),solH為溶解焓),從圖4可得到不同溫度下溶解度曲線斜率(?solH/(2.30)),從而計算出烷基-β-D-吡喃木糖苷6a~6f的溶解焓(表2);根據(jù)式(4)繪出相應的溶解熵(solS)與溫度的關系曲線,如圖5所示。
表2木糖苷6a~6f的溶解焓
溶解焓為正值意味著糖苷溶于水的溶解過程是一個耗能過程。實質(zhì)上,溶解是一種熵增加的過程,即糖苷溶于水時破壞溶劑水分子體系固有的次序,使水分子之間強的氫鍵作用削弱,但糖苷與水分子之間包括氫鍵在內(nèi)的各種作用力,這種熵驅使的溶解作用所放出的能量不足以彌補溶劑水分子之間作用力削弱所需要的能量,所以,溫度提高所提供的能量有助于糖苷在溶劑水中的溶解能力增強。從圖5可見:各糖苷在水中溶解時其溶解熵呈現(xiàn)隨溫度上升而下降的線性關系,其中丁基-β-D-吡喃木糖苷6a的溶解熵最低,當碳鏈從4個(化合物6a)增長到7個和8個即庚基-β-D-吡喃木糖苷6d和辛基-β-D-吡喃木糖苷6e時溶解熵達到最大,隨后有所下降(化合物6f)。
2.4烷基-β-D-吡喃木糖苷的乳化性
烷基-β-D-吡喃木糖苷的表面性能與其烷基鏈的長度有關。圖6所示為化合物6a~6f對菜籽油和苯的乳化性能。從圖6可以看出:化合物6a~6f對苯和菜籽油乳化后,靜置1 h后析出的水層體積(wb和wz)基本隨烷基鏈的增長而減少,但基本相差不大,即木糖苷6a~6f對苯和菜籽油的乳化能力隨烷基鏈的增長有略微增強;在=9時(化合物6f),對苯和菜籽油的乳化能力都達到最大。可能是由于壬基--吡喃木糖苷(6f)的烷基鏈較長,與疏水性有機化合物的作用能力強,從而使其與乳化物質(zhì)(苯和菜籽油)作用形成界面膜的強度相應增加,乳狀液液珠聚結時受到阻力增大,形成乳狀液的穩(wěn)定性提高,從而能夠形成更加穩(wěn)定的乳液層。
2.5烷基-β-D-吡喃木糖苷的起泡力及泡沫穩(wěn)定性
木糖苷(6a~6f)的起泡性能見圖7。圖7表明:當木糖苷的烷基鏈長≥6(化合物6c~6f)時,具有良好的起泡性;隨著烷基鏈長的增加,起泡性也逐漸增強;在=8時,起泡性最好,隨后又減小;當=9時,壬基-β-D-吡喃木糖苷(6f)在低質(zhì)量分數(shù)下(0.12%)具有很強的發(fā)泡力,且泡沫細膩。泡沫穩(wěn)定性()隨烷基鏈長的增加呈現(xiàn)出先下降后上升的趨勢,當為8和9時最強。因為辛基、壬基木糖苷(=8,9)的親水性基團與疏水性基團能夠良好地匹配,在液體表面形成的液膜強度比較大,穩(wěn)泡能力最強。
2.6烷基-β-D-吡喃木糖苷的表面張力
烷基-β-D-吡喃木糖苷的表面活性可以用其溶液降低表面張力的能力或效率來衡量,前者用表面活性劑使溶劑表面張力降低程度來衡量,后者用使表面張力降至一定值時所需要的表面活性劑質(zhì)量分數(shù)來衡量。通過上述乳化性能和起泡性能測試結果可以看出:木糖苷6a,6b的表面活性較差,糖苷6c~6f具有良好的表面活性。本文采用最大泡壓法,在25℃下,測定并計算出不同質(zhì)量分數(shù)下烷基-β-D-吡喃木糖苷6c~6f所對應的表面張力。從圖8可以得出:1)幾種烷基-β-D-吡喃木糖苷(6c~6f)添加到水中明顯地降低了水的表面張力,呈現(xiàn)出兩親結構特征的木糖苷分子固有的表面活性;2)在所測的質(zhì)量分數(shù)范圍內(nèi),烷基木糖苷(6c~6f)表面張力都有隨質(zhì)量分數(shù)增大先急劇下降而后又緩慢下降,最后基本不變的趨勢;3)不同的木糖苷6c~6f臨界質(zhì)量分數(shù)(CMC)不同。
表3所示為烷基-β-D-吡喃木糖苷6c~6f的臨界質(zhì)量分數(shù)及所對應的表面張力。溶液表面的吸附量達到飽和時(剛好飽和時的濃度即為臨界濃度),表面張力最小。從表3可以看出:辛基-β-D-吡喃木糖苷(6e)達到臨界濃度時對應的表面張力是最低的,能力最強。因為烷基木糖苷的表面活性是由其親水糖基和疏水烷基鏈共同決定,當烷基鏈長為=8(糖苷6e)時,親水性和疏水性達到最佳平衡,表面張力最低。
表4所示為糖苷6c~6f在同一濃度時對應的表面張力。從表4可見:當糖苷6c~6f質(zhì)量濃度都為0.3 g/L時,表面張力隨著烷基鏈長的增大而減小,糖苷6f使表面張力下降最低,效率最高。其原因可能是糖苷的烷基鏈越長,疏水性越強,所得糖苷逃離溶液內(nèi)部而富集于溶液表面的傾向增大,因而其表面活性表現(xiàn)出隨著烷基碳鏈長度的增加而增大的趨勢。





